
Contents

1 Introduction 6

2 Analysis 8
2.1 Measurements and control . 8
2.2 User interface . 11
2.3 Communication . 12

3 Implementation 13
3.1 ADC . 14

3.1.1 ADC Initialization . 14
3.1.2 Timing Function . 14
3.1.3 Measurements . 15
3.1.4 Data Processing . 16
3.1.5 Signal Values and Calibration . 16
3.1.6 Control . 16

3.2 Web Server . 17
3.2.1 Integration . 17
3.2.2 File Support . 18
3.2.3 Scripting . 18

3.3 Web Page . 19
3.4 GUI functional description . 21

3.4.1 The main GUI window. 21
3.4.2 The setup GUI window. 22
3.4.3 The network GUI window. 22
3.4.4 Development of the GUI . 23

3.5 Expansion of the drv glcd.c display driver 23
3.6 Touch screen driver . 25

3.6.1 The GUI event handler UserInterface.c 25

4 Test and Results 27
4.1 Test . 27
4.2 Conclusion . 27

A GUI related appendices 30
A.1 8-bit encoding utility . 30
A.2 List of functions added or expanded in the drv glcd.c display driver . 32
A.3 List of functions contained within the TouchScr Driver.c touch driver 33
A.4 List of functions contained within the UserInterface.c event handler . 34

3

List of Figures

1.1 Development and analog board. 7

2.1 Analog RC filter . 9
2.2 Low pass filter . 10
2.3 Samples at sample offset . 11

3.1 An overview of the first part of the webpage 20
3.2 The main GUI window. 21
3.3 The setup GUI window. 22
3.4 The setup GUI window. 23

4

Nomenclature

fc Cut off frequency.

IRMS RMS current

Pavg Average power

T Period time

xa X coordinate of sample below offset.

xb X coordinate of sample above offset

ya Y coordinate of sample below offset

yb Y coordinate of sample above offset

∆T Sampling interval

P Power in watts.

5

�A brief description to
frequency controlled de-
mand. What it means,
why it is smart, and how
it can be employed.� 1

Introduction

The electrical power grid must be able to provided electricity in correspondence to
the consumption. Since the consumption varies the power grid must constantly be
adjusted. The generators can accommodate these variations to some extend due to
kinetic energy storage. However the frequency of the system will drop if there is an
energy deficit and will increase if there is an energy surplus. If the energy deficit
becomes too great it could cause a blackout. Whenever a supplying company cannot
provide the demanded power, the company must buy electricity on the market.
At sudden energy deficit the system must respond within 15 minutes by buying
electricity in the regulating market. Prices in this market are often much greater
than day-to-day markets, however, the end-user never experiences these changing
market prices. The end-user will always be priced with a fixed amount relative to
the kWh used.

A possible alternative to the solution described above, is to switch off household
appliances in case of energy deficit. Since the frequency of the grid can be measured
anywhere it is possible to implement intelligent energy control of appliances. The
energy control must thus be able to switch off individual appliances minimizing
discomfort for the end-user. This approach is referred to as frequency-controlled
demand.

In this project a microcontroller will be programmed to monitor the frequency
of the grid and act accordingly. The microcontroller used in this project is on a
development board from IAR. It has an ARM7 core with build in peripherals such
as ADC, DAC and Ethernet. It has an internal clock of 72 MHz and has 64 kB
on-chip SRAM used for working memory and 512 kB on-chip flash memory where
code and constants are stored. Furthermore it has 64MB external SDRAM. The
board has an LCD screen with a resistive touch screen mounted on top.

Besides the development board, an analog board will be used to provide low-
voltage signals to the microcontroller. The analog board has two mounted relays
connected to a light bulb and a standard wall socket. Furthermore a measurement
transformer circuit is used to scale voltage and current to an interval of 0-3,3V. The
two boards are shown on figure 1.1.

As shown on the figure, the two boards have a number of connectors making it
possible to connect the board with coaxial cables. During development a oscilloscope
can be connected as well. The ARM7 is programmed through a JTAG usb cable.

6

Figure 1.1: Development and analog board.

The project consists of three parts:

• Measurements and control - measure frequency, voltage and current and set
relay signals accordingly. All measurements will be calculated using the ADC
of the microcontroller. This will be handled through interrupt routines.

• User interface - the LCD screen and touch screen will be used to implement
a graphical user interface. The LCD is updated with measurement values
and various information and the user will be able to input parameters to the
system using the touch screen. The touch screen uses the ADC to determine
the location of the touch.

• Communication - a uIP1 stack is implemented and communication between the
microcontroller (server) and a PC (client) is established with a cross-over cable
connected to the Ethernet ports. The measurement data is stored in an XML
file and displayed client-side in a web browser. A web page is implemented
using JavaScript and jquery to retrieve the data in the XML file and display
it in a readable fashion.

For code development the IAR’s Embedded Workbench for ARM - kick start
edition is used, which is limited by code size. For web page development a standard
text editor is used. Graphical content is implemented using the jquery JavaScript
library from {P}flot, Ole Laursen, IOLA.

1Micro IP

7

�This chapter is dedicated
to the analysis that formed
the base for further devel-
opment. � 2

Analysis

As described in the introduction the project consist of three part. The analysis of
all three parts are described on the following sections.

2.1 Measurements and control

The main functionality of the system is to monitor the frequency of the input signal
and act accordingly. As mentioned in chapter 1 the electrical power system has a
normal operation interval of [49.9Hz ; 50.1Hz]. Under controlled disturbance the
frequency will be in the interval [49.5Hz ; 49.9Hz]. The frequency must not drop
below 49,5Hz. Hence the implemented frequency-responsive system must react to
frequency drop below 49,9Hz to be compatible with the standard. This will require
high resolution and precision of frequency measurements and timely response.

The development board will be connected to the analog board when the system
is fully functional. The analog board has two mounted relays connected to a light
bulb and a standard wall socket. The light bulb must act as disturbance reserve and
the device connected to the wall socket as normal operation reserve. The connected
device can be e.g. a laptop. This will insure the least amount of discomfort for the
user, since the light should not be turned on and off frequently. A laptop charger
being toggled between on and off will not cause noticeable disturbance for the user.
However, if the toggling occurs too frequently it might cause damage to the laptop
charge.

The development board has a number of connectors where the input signal must
be connected. The first step of the implementation will be to convert the analog
input to digital values using an ADC. The sample rate must be appropriate with
respect to the input frequency, which is in the area of 50Hz. 10.000 samples per
second will give a relatively good resolution and still leave time for the processor to
perform other tasks, since the ADC has a operation clock of 4,5MHz and uses 11
cycles to perform a conversion.

Noise can potentially ruin measurements thus must be handled. On the devel-
opment board the display in particular causes disturbance. To remove noise a filter
will have to be implemented. A fist-order low-pass filter will ensure that the high
frequency noise is filtered. In discrete time, the filter output y is computed from the
input x as follows:

8

2.1. MEASUREMENTS AND CONTROL

Figure 2.1: Analog RC filter

yi = αxi + (1 − α)yi−1
✞✝ ☎✆2.1

α = ∆T

RC +∆T

✞✝ ☎✆2.2

∆T denotes the sampling interval and RC a time constant with the following
relation to the cutoff frequency fc:

RC = 1
2πfc

✞✝ ☎✆2.3

Figure 2.2 shows the behavior of the filter. A natural choice of the cutoff fre-
quency would be 50Hz. However, the signal amplitude will be damped 3dB at the
cutoff frequency and the signal will be phase shifted. The phase shift will not influ-
ence the measurements but the damping will give incorrect results when measuring
e.g. voltage and power. This must be taken into account.

To calculate the frequency of the input signal, zero-cross detection can be applied.
In this case, however, the signal should be between 0V and 3,3V as the ARM7 cannot
operate with negative voltage levels. Hence a virtual zero will be applied at 1,65V,
which is the offset of the input signal. When the input signal crosses the offset
voltage level, two consecutive samples outputted from the ADC will be lower than
the offset and higher than the offset, respectfully as seen on figure 2.2.

Within a period of the input signal there exist three zero-crossings: one on an
increasing slope, one on a decreasing slope and finally one on an increasing slope. To
calculate the period, only the two crossings on the increasing slopes will have to be
detected. The ADC output values are in the range 0x000 - 0x3FF (0 - 1023). Where
0x000 corresponds to 0V and 0x3FF corresponds to 3,3V. Thus the offset will have
a value of 1023/2 = 512 (0x200).

To improve accuracy, interpolation can be applied. The simplest method is to
use linear interpolation between the two consecutive samples at a crossing using the
following formula:

y = ya + (yb − ya) (x − xa)(xb − xa)
✞✝ ☎✆2.4

9

2.1. MEASUREMENTS AND CONTROL

Figure 2.2: Low pass filter

Here, (xa,ya) denotes the sample below the offset and (xb,yb) the sample above the
offset and y the offset itself. To calculate the crossing, the formula is rearranged:

x = (y − ya)(xb − xa)(yb − ya) + xa

✞✝ ☎✆2.5

Besides the frequency, the voltage and current should be sampled as well. The
results should be expressed with RMS values, which is described as follows in discrete
time:

XRMS =
������

N�
n=0 x

2
n

N

✞✝ ☎✆2.6

From the voltage and current measurements the power can be calculated as well.
The power should be expressed as an average, hence can be expressed as follows in
discrete time:

Pavg =
N�

n=0 unin

N

✞✝ ☎✆2.7

The analog board has measurement transformers which will scale the voltage
and current in the interval 0-3,3. However, a voltage of 240V or a current of 1A

10

2.2. USER INTERFACE

Figure 2.3: Samples at sample offset

(maximum values) is not guaranteed to output 3,3V. This will have to be calibrated
in order to get correct results.

2.2 User interface

The development board has a LCD screen and a touch screen mounted on top. This
provides the ability to make a graphical user interface (GUI) and have the user
interacting with the system via the touch screen. The main functionality of the GUI
is to display immediate measurements such as frequency, voltage, current and power.
Furthermore the user should be able to set a number of parameters to be used by
the system. To avoid that displayed values oscillate it might be necessary to output
average values e.g. an average over one second. To implement the GUI, an image
(or several) must be stored on the microcontroller. Due to limited space the images
must be appropriately compressed e.g. by using a color palette with 256 colors.

The touch screen is of the type resistive. This means that a voltage across the
screen will be altered when touched. This can be used to determine the position of
the touch on one axis. Thus it is necessary to sample the voltage across the screen on
both axes. Furthermore several samples on both axes will have to be used since this
type of touch screen is not very accurate. A mean of sampled voltage levels should
make it possible to determine the position fairly accurate. The voltage samples from
the touch screen must be digitalized using the ADC. This poses a potential problem,
since the ADC will already be used for measurements. This issue must be handled
carefully in order to avoid conflicts.

11

2.3. COMMUNICATION

2.3 Communication

The development board has an Ethernet port making communication via TCP/IP
possible. The third part of this project is to implement communication between the
board and a PC. The communication will be a closed network between the board
and the PC by using a cross-over cable. This means that the microcontroller will act
as server and the PC as client. The board supports the µIP TCP/IP stack and a
compact implemented version is provided from IAR System, hence will be the main
inspiration for this part of the project. The web pages on the board are compiled
into the project and can be modified using the utility makefsdata, provided in this
course.

The file transfer of data must be implemented using XML files. The provided
µIP stack does not support the file extension .xml thus the µIP must be updated.
Furthermore the µIP has a scripting engine supporting shtml. This must be ex-
tended as well to support scripted XML (sxml). The XML file should contain all
measurements. Besides immediate values, some sort of history should be included
in the XML file as well.

The XML file can be displayed in a web browser client-side however, this is not
very readable in general. To remedy this, a web page must be implemented. To
retrieve the data in the XML file JavaScript can be included in the page or by using
style sheets. The best way to display historical data is properly by using some sort
of graphics. This can be achieved by using jquery, hence using JavaScript to retrieve
data from the XML file would be an obvious choice. When implementing the web
page it is possible to make a fancy design and graphical representation of historical
data. However, care must be taken not to make the web page to extensive and
thereby occupying to much space on the board.

12

�This chapter describes
all parts of the implemen-
tation process. From ADC
sampling, to web serving,
to the graphical user inter-
face � 3

Implementation

This chapter contains a description of actual implementation. As described in chap-
ter 2, the implementation can be divided into four different main parts, of which
several subdivisions will be covered later in this chapter.

• The ADC, responsible for the actual measurements and the control of the
output signals.

• The GUI, containing the graphical user interface along with the touch input.

• The web server, hosting a human readable presentation of the systems mea-
surements along with a machine to machine xml interface,

• The web page, the actual presentation of data, in a human readable format.

The following table displays the allocated resources throughout the project.

Resource Usage
ADC - channel 0 Touch screen measurements on x-axis
ADC - channel 1 Touch screen measurements on y-axis
ADC - channel 2 Current measurements
ADC - channel 3 Voltage and frequency measurements
Timer0 µIP timer
Timer1 Measurement timer
External SDRAM Background image of main window:

0xA1000000 to 0xA1257000
Background image of setup window:
0xA1258000 to 0xA14A0000
Background image of network setup window:
0xA14B0000 to 0xA1707000
Bypass button image:
0xA1708000 to A1710810

13

3.1. ADC

3.1 ADC

This section covers the implementation of the actual measuring system. As previ-
ous described, the core of this project is to make precise and continues frequency
measurements of the power signal. Besides measuring the frequency the current,
voltage, and power is also relevant. The on-chip 10-bit ADC is used to make the ac-
tual measurements. From the analog board two indication signals are given. One for
voltage and one for current. These signal are in the range of 0v to 3.3v. From these
two sources the program must be able to deduct the frequency, actual power usage,
the RMS voltage, and RMS current. From these measurements the program must
control a couple of relays on the analog board. To implement these requirements the
following elements must be implemented.

• Initialization the ADC to make voltage measurements and the necessary input
ports.

• A timer function that will enable continues sampling with the same intervals.

• Make both voltage and current measurements.

• Processing of internal ADC output data and physical unit values such as Volt-
age and Frequency.

• Make the mathematical calculations in order to convert the samples into useful
values.

• A algorithm that controls the analog boards relays based on the frequency
measurements.

3.1.1 ADC Initialization

This part is primarily done in the adc init function, found in the adc.c file. Firstly
the ADC is powered up and enabled. Next the ADC clock frequency is set. A
frequency of 4.5MHz is chosen. This is to insure that the ADC has enough time to
get a stable output. Since the ADC clock per default is 18MHz, the clock divider is
set to the value of 4. For input the ports AD0[2] and AD0[3] are enabled with their
pull-up transistors disabled. The ADC interrupt is set to run the ADCInterrupt
function in the main.c file whenever the ADC has a result ready.

3.1.2 Timing Function

To get a stable sample rate the Timer1 is used, because the µIP web server per
default uses the timer0. In order to insure precise measurements a fast sampling
frequency of 10’000 samples per second is chosen. This sample rate can easily be
increased or decreased depending on the workload of the rest of the system, the more
samples the better the precision. If the sampling rate is set to high the system may

14

3.1. ADC

not have sufficient time to run the non essential functionality between the interrupts.
A possible way to maximize the utilization of the system resources, is to implement
a scheduling algorithm to handle the execution of the different tasks. When ever
the timer interrupt flag is set, the system jumps to the Timer1IntrHandler function.
Here the ADC is set to start making a sampling and consequently make a ADC
interrupt.

3.1.3 Measurements

All measured data are passed through a digital lowpass filter, as described in chapter
2, this is done in order to remove the high frequency noise generated by the board it
self. The actual measurements are done in the voltage measure and current measure
functions. These functions are called from the ADC interrupt, by listening to which
channel the result of the ADC is stored. Channel 2 indicates a current measurement
is done and channel 3 used for voltage measurements. The current measurement is
used for both the rms current calculation and the power calculations. Because the
rms current calculations uses a summation of the current squared, as seen in formula
3.1, and the power calculation uses the current times voltage, as seen in formula 3.2,
two separate values are stored.

IRMS =
�

1
T
� T

0
i(t)2 dt

✞✝ ☎✆3.1

P = 1
T
� T

0
u(t)i(t)dt

✞✝ ☎✆3.2

After a current measurement is done, the ADC the channel is changed to channel
2 and a new sample cycle is started. A voltage measurement is collected the next
time the ADC interrupt runs so, each timer interrupt is followed by a ADC interrupt
with current measurement and then a new ADC interrupt with voltage measurement.
Besides using the voltage measurement to calculate rms voltage and power, it is also
used for frequency calculation. After each voltage measurement a zero crossing
detection is done. Because the voltage signal is DC offset the actual zero crossing is
defined as 1.65V, which corresponds to a ADC output value of 512. Since the signal
make two zero crossings per period it is necessary to distinguish between the two.
The new voltage measurement is therefore compared with the previous measurement.
If the old measurement is below the offset value and the new measurement is above
the offset value it means that one period has passed. After a period is verified to
have passed all the power, voltage, current, and frequency measurements are moved
into separate calculations variables and a ready flag is set to indicate that a new
set data is ready to be processed. With this structure, a significant part for the
calculations have de spread out over all the sample periods and thus reducing time
needed to finalize the differen calculations.

15

3.1. ADC

3.1.4 Data Processing

When the data ready flag is set, the actual data processing begins in the freq calc
function. In order to improve the precision of the measurement, linear function in-
terpolation can be used to find the time for the exact zero crossing as previously
described in chapter 2. In order to improve the performance of the linear inter-
polation calculations a faster approximation is used. By finding the ratio between
the voltage measurements before and after the zero crossing, the same ration can
be used to approximate the time of the zero crossing. By using this approximation
the speed of the computations greatly improve, freeing up vital system resources for
other system elements. The degradation of precision by using the approximation is
greatly weight out by the possible increase in sampling frequency.

3.1.5 Signal Values and Calibration

A total of 50 sets of frequency, voltage, current and power measurements are accu-
mulated and averaged over to get the final measurement values. This gives reliable
and precise measurements free from glitches. Along side these values the maximal
and minimal variations of the frequency measurements are also stored. This is to
give a better view of the stability of the signal. In order to convert the ADC mea-
surements into SI units, it is necessary to calibrate the system. With the voltage
measurements this is no problem since voltage of the running system easily can be
measured with a voltage-meter. However current measurements are more difficult,
with the given configuration of the analog board. But since the load of the system
is know ie. a 60W light bulb the expected current can to some extent be calculated.
With respects to the frequency measurements a small offset also need to be adjusted,
this was achieved with simple oscilloscope frequency measurements. With correct
conventions factors derived from the calibration, the measurements are ready to be
store. 60 sets of processed data are stored in the memory for later use in the web
server, see section 3.2, resulting in around a minute worth of data stored. Having
somewhat larger data storage is not in it self a problem. However when the system
needs to process the data ie. send them to the web server, there will be a prob-
lem generating the data files and the sending them without using up all the system
resources.

3.1.6 Control

With precise frequency measurements in the memory, the core functionality of this
system can be implemented. The control of the load of the electrical system. Since
this is a prof of concept implementation, with a relatively limited analog testing
board, the actual functionality of this intelligent control will be somewhat simple.
In this testing setup a laptop will be connected to the electrical socket controlled
by one relay and an other relay controlling the light bulb. The main thought here
is, that the laptop does not need to be connected to the electrical grid all the time,
since it is equipped with an internal battery. This makes it possible for a intelligent

16

3.2. WEB SERVER

system to help keep the frequency of the power signal stable, by disconnecting this no
essential appliance with little or no discomfort to the user. With basis in NORDEL,
the system must disconnect the non essential appliance when the frequency varies
more that 0.1Hz. Giving the power grid time to correct it self. This correction
should be done within 2-3 minutes Therefore it shouldn’t be a problem for a system
like a laptop to be disconnected from time to time. In case of a larger disturbance
on the power grid resulting in a frequency change of more than 0.5Hz, the essential
appliance ie. the light bulb, will also be turned off for a short period of time. The
actual implementation of the control of the appliances is somewhat simple, since it
in this test case only has two control signal that must be turn on or off depending on
the frequency measurements. In a real world example this control implementation
would be quite more complex.

3.2 Web Server

This section covers the implementation of the web server. The main job of the web
server is to provide a machine-to- human interface (html) and a machine-to-machine
(xml) interface. More precisely the job of the web server is to provide a remote
access to the measurement data collected by the system. The construction of the
actual web page is covered in section 3.3. From the course material the web server
implementation is suggested to be based upon a example of a µIP server. Because of
this, most of the web server implementation is actually pre made and will therefore
not be covered in this report. However to use the µIP server several changes has to
be made to the functionality. These changes will be covered in this section.

• Intergrade the µIP server into existing implementation.

• Add support for additional file types, to support the web page.

• Change the scripting functionality to publicize the measurement data.

A short note on the structure of the web server. In order to reduce the amount of
data processing done server side, the measurement data will the publicized in a xml
format. The web page will then use java scripting to analyze the measurement data,
all this is covered in section 3.3.

3.2.1 Integration

For the TCP/IP stack to function, it needs to be able to meet different timing criteria.
The web server therefore need to utilize a timer and its interrupt functionality. This
gives rice to possible conflict with the existing timer- controlled ADC measuring
structure, since a interrupt in this system will not break into the runtime of an
other interrupt. However with the structure in the µIP example most of the heavy
non-time-critical functionality is run in the main loop, thus not interfering with the
measuring interrupts. This structure can thus with benefit be transferred into this

17

3.2. WEB SERVER

system. In the ADC implementation timer1 is used, the web server can therefore
continue to use timer0.

3.2.2 File Support

Since the µIP web server uses pre complied web pages, the file support is for internal
use. The following file support is added to server.

• .xml, the base for machine-to-machine communication.

• .sxml, scripted xml format. This format is used to add server scripts to xml
files.

• .js, java script support is need for the web page.

To add these formats changes are made to the http−strings.c file and correspond-
ing header file. Here the file extension and content type is defined as constants.
These constants are then used in the httpd.c file, where support for the files and the
scripting format .sxml is added.

3.2.3 Scripting

For this system one script is added to the httpd−cgi.c file. The script needs to make
a xml structured data file for the .sxml file format. The script takes the array of
processed data and publicizes them in the data.sxml file with the following structure:

<measurements>
<measurement id="0">

<power>xx.xx</power>
<voltage>xxx.xx</voltage>
<current>0.xxx</current>
<frequency>50.xxx</frequency>
<frequency_min>49.xxx</frequency_min>
<frequency_max>50.xxx</frequency_max>
<sample_cnt>xxxx</sample_cnt>

</measurement>
<measurement id="1">
...
</measurement>

</measurements>

Most of the tags are quite self explanatory. Except the sample_cnt, this counter
is a way to chronologicalize the samples. The counter increments one for every new
sample. This way it is possible to a external machine to accumulate samples from
the µIP server by reading the data.sxml file once per minutes and still not lose the
chronological order of the measurements.

18

3.3. WEB PAGE

3.3 Web Page

The values stored in the XML file are to be displayed on a web page. This is
implemented in a JavaScript in a HTML file. The script consists of the following
functions:

• loadXML(xmlFile)

• verify()

• update()

Before loadXML is called the variable xmlFile is created with respect to the browser
in use. An element object is created in the function which will be used to load an
XML file. The function verify is called from within loadXML to check the status of
the object.

When the XML object is created the main function is called, namely update. The
first operation of this function is to load the XML file from the server called data.sxml.
The XML file contains 60 measurement tags hence the one containing the most re-
sent samples must be located. Each measurement tag has an ID attribute going from
0 to 59. The ID will always remain the same however, the tag containing the latest
samples varies over time. Besides the sample values each measurement tag contains
a sample count.

The tag containing the latest samples has the highest sample count. A for-loop
searches through the sample count values updating a variable with the largest value
and the corresponding ID attribute on-the-fly. When the latest measurement values
are located in the XML file there are to be displayed. A variable is created and
a string is appended with html table tags and the measurement values. A HTML
element is given the ID ”output” and the content of the element is set equal to the
string variable.

The next step is to produce plots of historical measurements. The jquery script
flot1 is used for his. All 60 measurements in the XML file are measurements over
1 minute combined, hence one measurement per second. The values of the entire
minute will be displayed on the web page. Only the most resent values are displayed
in a table as described above. In the XML file the oldest measurement tag is dis-
carded every second and the newest measurements are added in a tag. Even tough
the newest values can potentially be located in any measurement tag, all other values
are ordered according to this tag. This means that if the measurement tag with ID
= 27 holds the newest values, the tag with ID = 28 will contain the oldest values,
the tag with ID = 29 the second to oldest values etc. Going beyond the last tag with

1http://code.google.com/p/flot/

19

3.3. WEB PAGE

Figure 3.1: An overview of the first part of the webpage

ID = 59, the tags wrap-around and continues from the tag with ID = 0 to the tag
with ID = 27 (in this example).

The tag with the oldest value is located from the previous calculated ID of the
newest value by adding one to that value. The value is stored in a variable denoted
start cnt (start count). In the case where the newest value has ID = 59 the start
count is set equal to 0. Six variables are created to collect the following data from
the measurement tags:

power, voltage, current, frequency, minimum frequency and maximum frequency

A for-loop runs through tags starting from the start count value to 59 and the
variables are extended on-the-fly with measurement values. A second for-loop runs
through the remaining tags going from 0 up to the start count. Finally three plots
are created using the jquery library. The first plot shows the frequency, the minimum
frequency and the maximum frequency. The second plot shows the voltage and the
current (RMS values) using two separate y-axes. The third plot shows the power.

The script will run the entire update() function once every second. This is
achieved as follows:

window.setTimeout(update,1000);

20

3.4. GUI FUNCTIONAL DESCRIPTION

This will make the values in the table update every second and the plots will move
right-to-left, where the oldest values disappear from the plot to the left and new
values appear to the right. More specific; the plots will move one sample to the left
every second.

In the body of the HTML file the table and the plots are called along with some
heading and paragraphs. The body, headings and tables are formatted using a CSS
file. A part of the implemented web page is shown below on figure 3.1 where one out
of the three plots are visible.

3.4 GUI functional description

To accommodate user-system interaction a graphical user interface promoting the
on-board graphical LCD display and touch screen module has been developed. Much
work has been put into the development of the GUI in order to explore the possi-
bilities as well as the limitations of the LPC-2478-STK board, and to break down
this frontier. The result is a GUI including a numeric keypad, an analog rotary
dial gauge indicator, transparency and an 8 bit image encoding to supply each GUI
window with a unique full-screen background.

3.4.1 The main GUI window.

The centerpiece of the main GUI window is a full-height rotary dial gauge indicator
that displays the deviation from the expected net frequency of 50 Hz in percent.
The pixels describing the face of the dial gauge has been defined as a part of the
320x240 pixels background image whereas the dial gauge needle is animated, and
for eye-candy changing color relative to its position on the scale. At the foot of the
gauge face are three text labels displaying the net voltage, the amperage and wattage
consumed by the attached appliance. Delineating the right hand border of the LCD

Figure 3.2: The main GUI window.

21

3.4. GUI FUNCTIONAL DESCRIPTION

display are three buttons. The topmost button is a push-button that is used to gain
access the setup GUI window. The equidistant button is a toggle button that is
employed to either pass or bypass the regulation system. Bypassing the regulation
system will leave the appliance in an always-on state. The subjacent button is a
push-button that is used to gain access to the network configuration window.

3.4.2 The setup GUI window.

The setup GUI window is employed to give the operator access to configurable sys-
tems parameters. These are low pass filter cut-off frequency, sample rate, and oper-
ational limits. Delineating the left hand border of the LCD display are text labels
with a transparent background indicating the currently active system parameters.
These can be edited by tapping on a distinct parameter to set it active. The active
parameter will visually be represented by a green background border. The active pa-

Figure 3.3: The setup GUI window.

rameter can subsequently be adjusted by tapping the subjacent push-buttons. Any
edited parameter will be promoted active when the operator confirms the changes
by means of the topmost push-button delineating the right hand border of the LCD
display. The edited parameters can be discarded by using the by using the subjacent
Cancel button.

3.4.3 The network GUI window.

The network GUI window is employed to give the operator access to configurable
network parameters of the embedded web server. These are TCP/IP address and
Subnet. In order to allow the operator to easily input numeric values, a 10-digit
keypad is drawn on-screen. The configurable IP address and subnet are described
using standard dot-decimal notation. Mimicking the behavior of the user input from
the setup GUI2, the operator can tap on a distinct 1-byte part of the 4-bytes that

2Section 3.4.2

22

3.5. EXPANSION OF THE DRV GLCD.C DISPLAY DRIVER

Figure 3.4: The setup GUI window.

comprise the full IP address, and assign a number between 0-255 using the numeric
keypad. If an illegal number is tapped, the byte is cleared. As with the setup
GUI any edited parameter will be promoted active when the operator confirms the
changes by means of the topmost push-button delineating the right hand border of
the LCD display. The edited parameters can be discarded by using the by using the
subjacent Cancel button.

3.4.4 Development of the GUI

The GUI of the project is based on the compiler-provide demonstation project,
TouchDemo.eww3 . This demonstation project has been tailored to suit its new
application as a graphical frontend capable of handling user input.

3.5 Expansion of the drv glcd.c display driver

In order to display a unique full-screen background on each of the three main win-
dows of the user interface, the compiler-provided display driver4 has be expanded to
handle 8-bit image decompression using custom generated 256 color palettes. The
compressed images are expanded to the SD ram of the development board starting
at address 0xA1000000. Likewise a c++ terminal application has been written in
order to compress and format data from the utility by the supervisor to handle 32
bit hex encoding of images for insertion as constant arrays in the source code. This
is done in order to lower the projects build size below the 512 kB barrier defined by
the flash memory size of the Arm processor. The image decompression functions,
and a documentation of their input arguments and return parameters can be found

3Revision 34711 for the IAR LPC2478-STK
4drv glcd.c from the demonstration project.

23

3.5. EXPANSION OF THE DRV GLCD.C DISPLAY DRIVER

in the project source code in drv glcd.c in the project. The source code of the image
compression utility is available in appendix A.1.

Animation of the analog dial gauge needle has been done by a pixel-by-pixel method.
The dial gauge needle is drawn and redrawn pixel-by-pixel by first reconstructing
the pixels at the current needle position. The pixels at the new needle position are
subsequently accumulated in an array for consecutive restoration and postliminary
the new needle can be drawn. Two functions has been made for this purpose. One
that accepts a gauge needle position as an angle, and one that is calibrated with
the dial gauge face that accepts a needle position in milHz. Helper functions has
been created to read and write individual pixel RGB values to the display. All these
functions can be found in the drv glcd.c display driver.

In order to prevent including a bigger version of the printf family in the compiler
options, a ftoa()5 has been written. This function is emplyed by the need animation
functions and hence also located in the drv glcd.c display driver.

Text labels with transparent background has been introduced to the drv glcd.c dis-
play driver. This has been done by expanding existing functions as well as defining
new helper functions.

A list of added and modified functions can be seen below. A list including
comments, input arguments and return values can be seen in appendix A.2

• void GLCD WritePixel (Int32U x,Int32U y,Int32U PixelColor)

• Int32U GLCD ReadPixel (Int32U x,Int32U y)

• void GLCD DrawGauge(Int32U Angle ,Int32U GagueColor,Boolean ForceUp-
date)

• void GLCD SetGaugeValue(Int32U milHz, Boolean ForceUpdate)

• void GLCD ExpandPictures()

• static void LCD SKIP PIXEL()

• void GLCD print transparent (const char *fmt, ...)

• int GLCD putchar (int c, Boolean Transparent)

With the above expansions of the drv glcd.c display driver, all wanted graphical
display functionality can be implemented.

5float to ASCII function

24

3.6. TOUCH SCREEN DRIVER

3.6 Touch screen driver

All operator input is received by means of the touch screen hardware. Input is de-
tected by means of the ADC module of the MCU. This must be synchronized with
other utilization of the ADC module. As a result of this a touch screen driver has
been developed that can be run in series with other ADC routines and be initiated
from an ADC interrupt handler. The touch screen driver named Touch Scr Driver.c
is comprised of an initialization part, a touch detection part, and a coordinate calcu-
lation part. From the operator point of view, a touch event is triggered the moment
the finger is released from the touch screen. Hence a de-bounce handling has been
build into the touch screen driver. The list of functions in Touch Scr Driver.c can
be seen below. A list including comments, input arguments and return values can
be seen in appendix A.2

• Int32U Touch Measure(void)

• void Update TouchScr(void)

• void Init TouchScr(void)

• Boolean TouchGet (ToushRes t * pData)

Touch and GUI calculations are started from the main program loop in main.c
as follows:

1 Update_TouchScr () ; // Opdater Touchskærm og undersøg om den be rø r e s
2 Touch = TouchGet(&XY_Touch) ; // Hent koord inate rne f o r be rø r ingspunkte t
3 Update_GUI (XY_Touch . X , XY_Touch . Y , Touch) ;

Initially Update TouchScr() is called. If the screen is touched this will start
a measurement series. Touch coordinates are pulled from the touch driver using
TouchGet(). TouchGet will return true if a touch event has occurred and update the
X and Y coordinates where the tap took place. These parameters are finally passed
to the Update GUI() function that handles the GUI.

3.6.1 The GUI event handler UserInterface.c

Handling of most of the elements of the GUI is done by a GUI event handler function.
One distinct out of the three GUI windows are shown dependent on a flag that defines
the GUI state in the event handler.

1
2 typede f enum
3 {
4 MainScreen = 0 , // Main GUI window
5 ConfigScreen , // Conf igurat ion window
6 NetScreen , // Network setup window
7 } GUIState_t ;

25

3.6. TOUCH SCREEN DRIVER

The GUI event handler function is called each time a tap is registered on the
touch screen. Using a function called...

Boolean Button_Hit (Int32U x , Int32U y , ButtonArea_t button)

...the event handler performs a check to see if any interactive area of the touch
screen in its active state has been tapped. If this is the case, relevant code sections
are executed.

Interactive areas are defined as follows and are passed to the Button Hit function
as input argument.

ButtonArea_t TestButton =
{

iLeft , iTop , iRight , iBottom , f a l s e
} ;

The list of functions in UserInterface.c can be seen below. A list including com-
ments, input arguments and return values can be seen in appendix A.4

• Ivoid Init GUI()

• Boolean Button Hit(Int32U x, Int32U y, ButtonArea t button)

• void Update GUI(Int32U cursor x, Int32U cursor y, Boolean Touch)

• void DrawNetWindow()

• void DrawSetupWindow()

• void DrawMainWindowLabels(float Voltage,float Current, float Power)

• char *ftoa(float f, char* buffer, int bufSize, int decimals)

• void IncrementAddress(Int32U KeyValue)

26

�This chapter contains
verification of the devel-
oped system, testing func-
tionality, performance and
concluding on the results.� 4

Test and Results

4.1 Test

Before the implementation is tested with the application, it is verified that no in-
terrupts are delayed and that computations are finished on time. This is done by
toggling the output pins P0[11] and P0[19] in the interrupts and calculation routines
and displaying the signals on an oscilloscope. This test was not initially a success
due to long calculation periods. This was solved by simplifying the interpolation as
described in section 3.1.4. After this adjustment the test proved successful.

The implementation was first tested with a frequency generator. The output
was set to 3,3V pp with an offset of 1,65V. Furthermore the output was set to high
impedance. During testing one of the LED’s on the board was set to switch on and
off, to indicate the logical value of the output (input to the relay). As the frequency
was altered the LED switched on and off within the normal operation frequency
range with correspondence to the NORDEL standard. This indicated a good and
precise resolution of the measured frequency and a correct response. Hence the test
was a success. Furthermore this test setup was uses to verify the functionality of the
GUI, in particular the dial gauge needle indicating the frequency.

Finally the implementation was tested using the analog board. During the entire
test the light bulb was on as the analog board is operated by the power grid. However
the connected laptop charger did switch on and off within the normal operation. This
test provided verification of the measured voltage, current and power as well. The
test was also used to verify the functionality of the web page.

Unfortunately there wasn’t enough time to test the implementation with the
Omicron test setup.

4.2 Conclusion

In this project a Frequency-Controlled Demand system has been implemented. The
main functionality of the system is to measure the frequency, voltage, current and
power of input signals and set output signals accordingly. The output signals control
relays making it possible to switch connected appliances on and off. As described
in the introduction, appliances are switches of as the frequency of the input signals
decreases. By method is applied to stabilize the frequency of the power grid. In

27

4.2. CONCLUSION

addition to the frequency control, a GUI and TCP/IP communication between the
system and a PC has been implemented.

The development and implementation of the described application was split into
three major part:

• Measurements and control

• User interface

• Communication

Regarding measurements, much effort was invested in producing as accurate results
as possible. Interpolation was implemented to detect zero-crossing more accurately.
However, this approach posed a problem when the GUI and measurement code
was merged. The calculations simple took to long and could not finish before the
ADC outputted a new set of measurements. Thus an approximation had to be
implemented, sacrificing precision. The cutoff frequency of the low-pass filter was
set to 100Hz to minimize damping of the input signals. However, this parameter is
changeable in the GUI. As a standard value, 100Hz results in good measurements
but if the user should be able to set the cutoff frequency manually, the damping of
the signal would have to be taken into account.

The user interface has been one of the focus areas in the implementation. The
LCD driver provided from IAR (LCD Demo) has been extended greatly, making it
possible to use 8-bit compression of images. This has made several backgrounds in
various menus possible. The GUI is implemented as an ”on-demand” event, only
updating the GUI when its necessary. The implementation of the touch screen
driver has resulted in good precision. This is achieved by storing sample history and
detecting, when a finger (or stylus) is removed from the screen. When this occurs,
samples are unreliable thus the most recent samples at release are discarded and the
sample history is used to detect the location of the touch. The user is able to enter
parameters to the system by selected the given parameter and increase/decrease the
value using buttons. Furthermore a keypad of buttons makes it possible to enter IP
address in the network setup menu.

The communication was implemented using the µIP stack. The module provided
by IAR (Web Server Demo) was extended with the support of XML files and scripts.
All measurements are stored in an XML file and is the basis of the entire communi-
cation. This approach was chosen because a further development of the application
would be to enable the microcontroller to communicate with other appliances, mak-
ing XML an obvious choice. The implemented web page reads the data from the
XML file in a JavaScript. This script is also responsible for updating the web page
with measurements and measurement history. A graphical representation of history
was chosen since this is an intuitive way of reading it. All displayed values are aver-
ages over one second except the minimum and maximum frequency observed within
a second. The average frequency history is plotted with the minimum and maximum
frequency values, which gives a good visualization of the stability of the frequency.

28

4.2. CONCLUSION

A shortage of the implementation is that the normal operation reserve is switched
on and off as the frequency varies. This is not ideal since the connected appliance
is likely to be damaged. In future development of the implementation it would be
necessary to implement some timing, switching off the normal operation reserve for
a given time, e.g. 2 minutes, and afterwards keeping it switched on for a minimum
of e.g. a few minutes, depending on the specification of the connected appliance.

29

A
GUI related appendices

A.1 8-bit encoding utility

1 /∗
2 ∗∗
3 ∗ ∗
4 ∗ 8 b i t encoder f o r 32 b i t image data in hex format ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ Usage : ∗
8 ∗ I n s e r t your image data where i nd i c a t ed below . ∗
9 ∗ and compi le . ∗

10 ∗ ∗
11 ∗ From your te rmina l do a : ∗
12 ∗ ∗
13 ∗ . / conve r t e r >> ou t pu f i l e ∗
14 ∗ ∗
15 ∗ Author : David Bue Pedersen ∗
16 ∗ ∗
17 ∗∗
18 ∗/
19 #inc lude <iostream>
20
21 s t a t i c i n t palette [2 5 6] ;
22 s t a t i c i n t nextPaletteIndex = 0 ;
23
24 unsigned i n t mainguiStream [] =
25 {
26 // I n s e r t 32 b i t hex data as f o l l ow s here : 0x00000000
27 } ;
28
29
30
31 /∗
32 ∗∗
33 ∗ Function : f i ndPa l e t t e Index ∗
34 ∗ Parameters : i n t rgb ∗
35 ∗ ∗
36 ∗ Returns : i n t ∗
37 ∗ Usage : ∗
38 ∗ Bui lds p a l e t t e and re tu rn s p a l e t t e index ∗
39 ∗ ∗
40 ∗∗
41 ∗/
42

30

A.1. 8-BIT ENCODING UTILITY

43 i n t findPaletteIndex (i n t rgb)
44 {
45
46 f o r (i n t index = 0 ; index < nextPaletteIndex ; index++)
47 {
48 i f (palette [index] == rgb) r e turn index ;
49 }
50
51 i f (nextPaletteIndex >= 256)
52 {
53 printf (”Your source hex array conta in s too many c o l o r s .\n”) ;
54 exit (1) ;
55 }
56
57 palette [nextPaletteIndex] = rgb ;
58 re turn nextPaletteIndex++;
59 }
60
61 /∗
62 ∗∗
63 ∗ Function : main ∗
64 ∗ Parameters : None used ∗
65 ∗ ∗
66 ∗ Returns : None used ∗
67 ∗ Usage : ∗
68 ∗ Reads source hex data , 8 b i t image date and ∗
69 ∗ gene ra t e s p a l e t t e . Then outputs image data and ∗
70 ∗ pa l e t t e to te rmina l ∗
71 ∗ ∗
72 ∗∗
73 ∗/
74
75 i n t main (i n t argc , char ∗ const argv []) {
76
77
78
79 f o r (Counter = 0 ; Counter < s i z e o f (mainguiStream) / s i z e o f (mainguiStream�

[0]) ; Counter++)
80 {
81 Color = mainguiStream [Counter] ;
82 i n t index = findPaletteIndex (Color) ;
83 printf (”0x%02X, ” , index) ;
84
85 i f (! ((Counter+1) % 8)) { // Modulus g i v e r hver 8 ' nde l i n j e
86 printf (”\n”) ;
87 }
88 }
89
90 printf (”\ nPr int ing Pa l e t t e :\n\n”) ;
91
92 f o r (Counter = 0 ; Counter < s i z e o f (palette) / s i z e o f (palette [0]) ; Counter�

++)
93 {
94
95 printf (”0x%06X, ” , palette [Counter]) ;
96
97 i f (! ((Counter+1) % 8)) { // Modulus g i v e r hver 8 ' nde l i n j e
98 printf (”\n”) ;
99 }

100 }
101 re turn 0 ;
102 }

31

A.2. LIST OF FUNCTIONS ADDED OR EXPANDED IN THE
DRV GLCD.C DISPLAY DRIVER

A.2 List of functions added or expanded in the drv glcd.c
display driver

Added functions

void GLCD_WritePixel (Int32U x , Int32U y , Int32U PixelColor)

Sets the pixel at coordinate x,y on the screen to the color defined by PixelColor.

Int32U GLCD_ReadPixel (Int32U x , Int32U y)

Get the pixel color at coordinate x,y on the screen.

void GLCD_DrawGauge (Int32U Angle , Int32U GagueColor , Boolean ForceUpdate)

Draws the gauge needle at the angle and with the color specified by the input argu-
ments. The Angle argument is in degrees.

void GLCD_SetGaugeValue (Int32U milHz , Boolean ForceUpdate)

Updates the gauge needle from a deviation of the input parameter in respect to
50,000 mHz

void GLCD_ExpandPictures ()

Expands the 3 GUI pictures from 8 bit arrays to 32 bit arrays stored in SD ram.

s t a t i c void LCD_SKIP_PIXEL ()

Used for implementing transparent text labels. This function is used within GLCD putchar
and should not be called directly.

void GLCD_print_transparent (const char ∗fmt , . . .)

Same as the native GLCD print but with transparent background.

Modified functions

i n t GLCD_putchar (i n t c , Boolean Transparent)

- Added a Transparent option as input parameter as well as appertaining code.

32

A.3. LIST OF FUNCTIONS CONTAINED WITHIN THE
TOUCHSCR DRIVER.C TOUCH DRIVER

A.3 List of functions contained within the TouchScr Driver.c
touch driver

Int32U Touch_Measure (void)

State swapping in-between ADC readings.

void Update_TouchScr (void)

Testes if the screen is touched. If this is the case, a reading series is started.

void Init_TouchScr (void)

Initialization routines for the touch screen. These include pin configuration and
setting initial states.

Boolean TouchGet (ToushRes_t ∗ pData)

Initialization routines for the touch screen. These include pin configuration and
setting initial states.

33

A.4. LIST OF FUNCTIONS CONTAINED WITHIN THE
USERINTERFACE.C EVENT HANDLER

A.4 List of functions contained within the UserInterface.c
event handler

void Init_GUI ()

Initialization routines for the GUI

Boolean Button_Hit (Int32U x , Int32U y , ButtonArea_t button)

Comparison of the touch coordinates with button areas as defined in the header op
this module.

void DrawNetWindow ()

Draws the elements of the net screen

void DrawSetupWindow ()

Draws the elements of the setup screen

void DrawSetupWindow ()

Draws labels on the main screen

char ∗ftoa (f l o a t f , char ∗ buffer , i n t bufSize , i n t decimals)

Float to arithmatic convertion. This in order to use the tiny version of the printf()
variants NB: Only handles positive floating point values.

void IncrementAddress (Int32U KeyValue)

Increment the active numeric field of either the IP address or subnet on the Net
window.

34

